3/1124

Seat Num	ber		DAGDU-40			
		BP-604-T				
.5		Biopharmaceutics and Ph. (736604)	armacokinetics			
Total Pag	ges :	5]				
Time: 3 H	ours		Max. Marks: 75			
Note: (1)	D	o not write anything on quest	tion paper except Seat No.			
(2)	G	Graph or diagram should be drawn with the black ink pen being				
	u	sed for writing paper or black	HB pencil.			
(3)	S	tudents should note, no supple	ement will be provided.			
(4)	A	ll questions are compulsory.				
1. Multi	ple c	hoice questions :	-10			
(i)	Nor	-linear pharmacokinetics is call	ed as:			
	(a)	Mixed order kinetics				
	(b)	Capacity limited kinetics				
	(c)	Dose-dependent kinetics				
	(d)	All the above				
(ii)	Wha	at kind of substances cannot p	permeate membranes by passive			
	diffi	sion ?				
	(a)	Lipophilic				
	(b)	Hydrophobic				
	(c)	Hydrophilic				

(d)

Non-ionized

P.T.O.

- $(iii) k_m$ and \mathbf{V}_{max} can be estimated from :
 - (a) Noyes-Whitney's equation
 - (b) Michaelis-Menten equation
 - (c) Fick's law
 - (d) None of the above
- (iv) Parenteral administration:
 - (a) Cannot be used in unconscious patients
 - (b) Generally results in a less accurate dosage than oral administration
 - (c) Usually produces a more rapid response than oral administration
 - (d) Is too slow for emergency use
- (v) Biological half-life does not depend on :
 - (a) Biotransformation
 - (b) Time of drug absorption
 - (c) Concentration of drug in plasma
 - (d) Role of drug elimination
- (vi) Which route of drug administration is most likely to lead to first pass effect ?
 - (a) Sublingual
 - (b) Oral
 - (c) Intravenous
 - (d) Intramuscular

DAGDU-40

2

- (vii) A study of what the body does to the drug is
 - (a) Pharmacodynamics
 - (b) Pharmacotherapeutics
 - (c) First pass metabolism
 - (d) Pharmacokinetics
- (viii) Which of the following is not a physiological barrier to distribution of drugs ?
 - (a) Blood brain barrier
 - (b) Blood skin barrier
 - (c) Blood CSF barrier
 - (d) Blood placental barrier
- (ix) In Michaelis-Menten equation, when $k_m <<$ C, the equation becomes :

(a)
$$\frac{-dc}{dt} = \frac{V_{max}C}{k_m + C}$$

$$(b) \qquad \frac{-dc}{dt} = \frac{\mathbf{V}_{max}\mathbf{C}}{k_m}$$

$$(c) \qquad \frac{-dc}{dt} = \frac{C}{k_m + C}$$

$$(d) \qquad \frac{-dc}{dt} = \mathbf{V}_{max}$$

DAGDU-40

3

P.T.O.

	(\mathcal{X})	Dose ratio is .	-1
		$\frac{\text{Loading dose}}{\text{maintenance dose}}$	
		$\frac{\text{Loading dose}}{\text{maintenance dose}} \times 100$	
		$\frac{\text{Maintenance dose}}{\text{loading dose}}$	
		(d) None of the above	
2.	Answ	ver the following (2 marks each):	10
	(a)	Define the term clearance with formula.	
	(<i>b</i>)	Define pharmacodynamics.	
	(c)	What are the objectives of bioavailability studies?	
	(d)	Enlist the formulation related factors influencing GI absorption of dr	ugs.
	(e)	Define non-linear pharmacokinetics.	
3.	Solve	any two:	20
	(a)	Describe various pharmacokinetic models.	
	(b)	Explain in detail various mechanisms of drug absorption through barri	iers.
	(c)	Write a short note on In-vitro-In-vivo-Correlation (IVIVC).	
4.	Solve	any seven:	35
	(a)	Write a note on Fick's first law of diffusion.	
DA	GDU	J-40 4	

- (b) Define:
 - (i) Bioavailability
 - (ii) Biopharmaceutics
 - (iii) Disposition
 - (iv) Teratogenicity
 - (v) Perfusion rate.
- (c) Explain in detail factors affecting elimination.
- (d) Write a note on theories of drug dissolution.
- (e) Explain various factors affecting drug distribution.
- (f) Explain any five non-renal routes of excretion.
- (g) Write down in detail bioequivalence study design.
- (h) Explain in detail the methods for bioavailability measurement.
- (i) What is protein binding of drugs and its types and add a note on mechanism of protein drug binding.

DAGDU-40

5

NACDIL-40